The reactor pressure vessel was lifted into the reactor pit in June 2010.
Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders at cost price. TVO is the developer, owner and operator of the Olkiluoto nuclear power plant.

The production of the nuclear power plant units in Olkiluoto (OL1 and OL2) covers about one sixth of the total electricity consumption in Finland. Half of this electricity goes to the industry, the other half is consumed by private households, service sector and agriculture.

Because of the need for increase in both self-sufficiency and additional capacity of electricity production, TVO is currently building a third power plant unit, Olkiluoto 3 (OL3). With the electrical output of approximately 1,600 MWe, OL3 will almost double the production capacity of the Olkiluoto power plant. In summer 2010 the Finnish Parliament granted TVO permission to build a fourth unit; Olkiluoto 4 (OL4).

Solid nuclear expertise

TVO employs a staff of about 800, many of them with solid experience in the operation and maintenance of a nuclear power plant gained over several decades. This expertise is also utilised and further developed in the construction of the OL3 and OL4 units.

Throughout its existence, TVO has provided further training to the employees and improved the competence of the staff in nuclear technology. The company’s nuclear expertise is being sustained by participating in international development programmes. Also the upgrading and modernisation projects as well as development and construction projects carried out at the existing Olkiluoto units develop the staff’s expertise. The modernisation projects implemented over the years have improved the safety as well as the production capacity and economy of the Olkiluoto power plant.

High in international ranking

TVO’s nuclear expertise is clearly evident by the high capacity factors of the Olkiluoto plant units. The capacity factors of OL1 and OL2 have varied between 93% and 98% since the early 1990s, ranking among the very top by international comparison.

The high capacity factors indicate reliability of operation, among other things.

The results achieved are based on meticulous and proactive planning of annual outages and modifications.

The radiation exposure doses of the personnel, which have been consistently low at the Olkiluoto power plant, have also yielded good results in international comparison.

TVO’s operating philosophy

As a nuclear power company, TVO is committed to a high level safety culture, which creates the comprehensive basis for all activities. According to the principles of the safety culture, issues are prioritised according to their safety significance and a high degree of operability and reliability of production are the key objectives of operation. Safety and factors affecting safety always take priority over financial considerations. The future vision of TVO is to be an acknowledged Finnish nuclear power company and a pioneer in its field. To achieve this goal, TVO acts responsibly, proactively and transparently, following the principles of continuous improvement in close cooperation with various interest groups.
Olkiluoto 3 (OL3) was decided to build for many reasons. The added capacity brought by OL3 not only meets the increasing demand but also compensates for the decreasing output of ageing power plants. Together with the use of renewable energy, the unit helps Finland to reach its carbon dioxide emission targets, contributes to the stability and predictability of electricity prices and reduces Finland’s dependence on imported electricity.

It was on this basis that TVO submitted an application to the Government in November 2000 concerning a Decision in Principle for the building of a new nuclear power plant unit. The Government adopted a Decision in Principle, and Parliament ratified the Decision in Principle on 24 May 2002. The Decision in Principle states that building the new nuclear power plant unit is in the interest of society as a whole.

After a call for tenders, in December 2003 TVO took the decision to invest in the construction of a power plant unit with a Pressurized Water Reactor (PWR) with an output of approximately 1,600 MWe at Olkiluoto. The type of the unit is known as a European Pressurized Water Reactor (EPR). The unit is being built on a turnkey basis by a consortium formed by AREVA NP and Siemens. AREVA NP is delivering the reactor plant, and Siemens is delivering the turbine plant.

Experienced power plant suppliers

Both of the principal suppliers are leaders in their respective fields. AREVA NP has delivered the principal components for a total of 100 light-water reactor units – 94 pressurized water reactors (PWR) and 6 boiling water reactors (BWR). The most recently commissioned PWR units for which AREVA NP supplied the principal components are Civaux 1 and 2 in France, which went on stream in 1997 and 1999, respectively. AREVA NP also delivered the principal components to units which went on stream in Brazil (Angra 2) and China (Ling Ao 1 and 2) in 2002.

Siemens is one of the leading power plant suppliers in the world. The combined output of the power plants delivered by Siemens exceeds 600 GWe.

Technology based on solid practical experience

OL3 is an evolutionary unit compared with the current power plant units, meaning that its basic design is based on the proven technology of existing power plants. Its development was based on plants commissioned in France (N4) and Germany (Konvoi).

Safety features in particular have been developed further. The unit was originally designed to allow for the management of a severe reactor accident (cooling of core melt) and a large aircraft crash (double shell of the reactor containment building).

Germany (Konvoi)

<table>
<thead>
<tr>
<th>Plant</th>
<th>Output (MWe)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neckarwestheim 2</td>
<td>1,269</td>
<td>1989</td>
</tr>
<tr>
<td>Isar 2</td>
<td>1,400</td>
<td>1988</td>
</tr>
<tr>
<td>Emsland</td>
<td>1,290</td>
<td>1988</td>
</tr>
</tbody>
</table>

France (N4)

<table>
<thead>
<tr>
<th>Plant</th>
<th>Output (MWe)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooz 1</td>
<td>1,450</td>
<td>1996</td>
</tr>
<tr>
<td>Chooz 2</td>
<td>1,450</td>
<td>1997</td>
</tr>
<tr>
<td>Civaux 1</td>
<td>1,450</td>
<td>1997</td>
</tr>
<tr>
<td>Civaux 2</td>
<td>1,450</td>
<td>1999</td>
</tr>
</tbody>
</table>
Operating principle of a pressurized water reactor (PWR)

A PWR plant has two circuits for heat transfer. Water is kept under high pressure by the pressurizer (1) and circulated by the reactor coolant pumps (2) in the primary circuit (3), which transfers the heat from the reactor (4) to the secondary circuit (5) in the steam generator (7). Reactor power is controlled by control rods (6). The pressure in the secondary circuit is much lower than in the primary circuit, which makes the water in the steam generator boil. The steam from the steam generator makes the turbine (8) rotate. The turbine rotates the coaxially mounted generator (9), generating electricity for the national grid. The steam from the turbine is cooled back to water in the condenser (10) with sea water (11). Condensate water is fed back to the steam generator with feedwater pumps (12), and the warm sea water is pumped back into the sea.

60 years service life

In addition to safety, the design of OL3 emphasizes economy in particular. The efficiency rate of the new unit, for instance, is 37% – some four percentage points higher than the original efficiency of OL1 and OL2.

The design is based on an expected service life of 60 years for the largest structures and components and 30 years for the more easily replaceable structures and components. Allowing in advance for such replacements enables the unit to have an economic service life of at least 60 years.

Compared with similar units recently commissioned in Europe, OL3 will have a reactor output about 1% greater and an electricity output about 10% greater.

OL3 is being delivered as a turn-key project. TVO has been responsible for site preparation and for the expansion of the infrastructure at Olkiluoto. Site preparation has involved earthmoving, excavation, road building, electrical power supply for the construction site and the building of the tunnels for the cooling water. The actual construction work that is the responsibility of the AREVA NP – Siemens consortium began in 2005.

Multi-stage quality control and inspection are carried out by representatives of TVO, plant supplier, subcontractors, and authorities.
The reactor building is surrounded by the fuel building and four independent safeguard building divisions.
The new OL3 power plant unit is being built to the west of the existing ones. The buildings in the new complex can be roughly divided into three parts: the nuclear island, the turbine island, and auxiliary and support buildings.

Nuclear island

The principal components of the nuclear island are the reactor containment, the fuel building and safeguard building divisions surrounding it. The reactor primary circuit is housed in a gas-tight and pressure-resistant double-shelled containment building, also known as the reactor building.

The fuel building, which houses pools for fresh and spent fuel, is on the south side of the reactor building and is about 50 m long, about 20 m wide and more than 40 m high. In addition to fuel storage, it is connected to workshop areas. Flanking the fuel building are the reactor plant auxiliary building and waste management building; the latter is used for handling plant waste.

The reactor building, fuel building and safeguard building divisions are designed to be able to withstand various types of external hazards such as earthquakes and pressure waves caused by explosions. All these buildings are built on the same base slab.

The reactor building, fuel building and two of the safeguard building divisions are designed to withstand a crash by a large aircraft.

Reactor containment building

The OL3 reactor unit has a double-shelled containment building in reinforced concrete.

The shape of the building was chosen for strength and on the basis of construction technology. The inner containment is a prestressed cylinder in reinforced concrete with an elliptical cover. It is designed to withstand temperature and pressure loads that may be caused by pipe breaks. The massive outer containment is a cylinder in reinforced concrete that shares the same base slab as the inner containment and protects it against external hazards. This massive double-shell structure is a new safety feature which the earlier power plants do not have.

Preventing release of radioactive material in case of an accident sets extreme requirements on the leak-tightness of the containment building, which has an inner liner of steel for this reason. The tightness of the building is closely monitored. Any leaks which occur are arrested between the inner and outer shells of the containment building, then filtered and delayed in the annulus ventilation system before being conveyed to the ventilation stack.

Personnel access to the containment building is managed through a special airlock during normal operation. The airlock has double-sealed doors at both ends; it is impossible to open both ends of the airlock at the same time. Personnel access is at ground level. There is also an emergency airlock on the service floor at about 19 m level through which personnel access to and from the containment building can be managed.

The big equipment hatch on the maintenance platform is used during construction and annual outages for bringing large components and devices into the containment building. The main crane of the reactor building, located above the containment building service floor has a lifting capacity of 320 tonnes.

The reactor building has an external diameter of about 57 m, a volume of about 80,000 m³ and a total height including underground levels of about 70 m. The ventilation stack is about 100 m high.
The inner containment building is clad with steel to ensure the gas-tightness of the building. The containment’s design pressure is 5.3 bar.
Safeguard buildings

The OL3 plant unit has parallel redundant safety systems which are physically separated from each other to ensure safe operation under all circumstances. The safety systems are divided into four independent subsystems, each of which is housed in a separate safeguard building division. All four buildings have their own low head and medium head safety injection systems, a residual heat removal system, an intermediate cooling system, a sea water cooling system, and an emergency feedwater system. The electrical and instrumentation and control systems are located on the upper levels of the safeguard building divisions. The control room is located in one of the safeguard building divisions.

Buildings 2 and 3 are between the reactor building and the turbine island, and buildings 1 and 4 are on opposite flanks of the reactor building. Each of the buildings is about 30 m long, 20 m wide and 30 m high.

The power plant unit has four emergency diesel generators suppling power to the safety systems in case of loss of offsite power. There are also two additional diesel generators, station blackout diesels, independent of the above four. The emergency and station blackout diesel generators ensure that the safety systems have power supply even under abnormal circumstances.

Turbine island

The turbine building is almost 100 m long, 60 m wide and 60 m high, including underground levels. Its volume is about 250,000 m³. Adjacent to it are the circulating water pump building and switchgear building. The main transformers and plant transformers are located to the north of the turbine building.

Auxiliary and support buildings

Beside safeguard building divisions 2 and 3, there is an access building, which contains locker rooms and washrooms, and a monitored accessway to the radiation-controlled area. There is a bridge from the access building to the office building, where radiation-controlled office space is available during annual outages. The power plant area also contains separate buildings for housing diesel generators, the sea water system buildings (mainly underground), and a number of minor support buildings.
Primary circuit main components

1 Reactor pressure vessel
2 Main coolant line, hot leg
3 Steam generator
4 Main coolant line, cross-over leg
5 Reactor coolant pump
6 Main coolant line, cold leg
7 Pressurizer
8 Pressurizer surgeline
The OL3 primary circuit system consists of four individual loops. It is designed for a service life of 60 years and constructed to withstand the loads caused by every conceivable situation of operation or accident.

Primary circuit main functions

In each of the four loops comprising the primary circuit, the coolant leaving the reactor pressure vessel at a temperature of 328°C goes through the main coolant line hot legs to the steam generators, where heat is transferred to the secondary circuit. The coolant, its temperature now approximately 296°C, is returned by the reactor coolant pump to the reactor through the inlet nozzles. Inside the reactor pressure vessel, the coolant first flows down outside the reactor core. From the bottom of the pressure vessel, the flow is reversed up through the core, where the coolant temperature increases as it passes through the fuel rods and the assemblies formed by them.

The pressurizer connected to the primary circuit keeps the pressure in the reactor high enough to prevent the coolant from boiling. Under normal conditions, the circuit is full of water which effectively transfer heat from the reactor core. Connected to one of the four individual loops, the pressurizer is larger in volume compared with the existing power plants so that it can better respond to any pressure transients during operation. This helps smooth pressure spikes and extends the useful life of the main components of the primary circuit.

The safety systems are designed so that in abnormal events they are able to perform a rapid shut-down of the reactor, known as a reactor scram. This ensures that the reactor releases as little energy as possible while also helping reduce pressure with maximum efficiency and keeping the actuation of the safety valves to a minimum.

Reactor cooling system properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor thermal power</td>
<td>4,300 MWth</td>
</tr>
<tr>
<td>Primary circuit flow</td>
<td>23,135 kg/s</td>
</tr>
<tr>
<td>Primary coolant flow per loop</td>
<td>28,330 m³/h</td>
</tr>
<tr>
<td>Coolant temperature in the cold leg</td>
<td>296°C</td>
</tr>
<tr>
<td>Coolant temperature in the hot leg</td>
<td>328°C</td>
</tr>
<tr>
<td>Primary circuit design pressure</td>
<td>176 bar</td>
</tr>
<tr>
<td>Primary circuit operating pressure</td>
<td>155 bar</td>
</tr>
<tr>
<td>Secondary circuit design pressure</td>
<td>100 bar</td>
</tr>
<tr>
<td>Main steam pressure under normal conditions</td>
<td>78 bar</td>
</tr>
<tr>
<td>Main steam pressure during hot shut-down</td>
<td>90 bar</td>
</tr>
</tbody>
</table>
Properties of the reactor pressure vessel and its inner structures

Reactor pressure vessel
- Design pressure: 176 bar
- Design temperature: 351°C
- Life time (capacity factor 90%): 60 years
- Inside diameter (under cladding): 4,885 mm
- Wall thickness (under cladding): 250 mm
- Bottom wall thickness: 145 mm
- Height with closure head: 12,708 mm
- Base material: 16 MND 5
- Cladding material: stainless steel (less than 0.06% cobalt)
- Mass with closure head: 526 t
- End of life fluence level (E > 1 MeV)
 - design value: 2.65 x 10¹⁹ n/cm²
 - expected value: ca. 1 x 10¹⁹ n/cm²
- Base material final RTNDT (final ductile-brittle transition temperature): ca. 30°C

Closure head
- Wall thickness: 230 mm
- Number of penetrations:
 - control rod mechanisms: 89 pcs
 - dome temperature measurement: 1 pcs
 - instrumentation: 16 pcs
 - coolant level measurement: 4 pcs
- Base material: 16 MND 5*
- Cladding material: stainless steel (less than 0.06% cobalt)

Upper inner structures
- Upper support plate thickness: 350 mm
- Upper core plate thickness: 60 mm
- Main material: Z3 CN 18-10 / Z2 CN 19-10**

Lower inner structures
- Lower support plate thickness: 415 mm
- Lower inner structure material: Z3 CN 18-10 / Z2 CN 19-10**

Neutron reflector
- Material: Z2 CN 19-10**
- Weight: 90 t

* low-alloy ferrite steel
** austenitic stainless steel
Reactor pressure vessel and internal structures

Pressure vessel
The reactor pressure vessel contains the reactor core. Both the pressure vessel and the vessel head are made of forged ferrite steel. They are also clad with stainless steel on the inside to prevent corrosion.

The pressure vessel is supported by beams which rest on the support ring in the top part of the reactor cavity, under the eight primary circuit pipes. The vessel head is fastened with bolts and a sealing gasket.

To manufacture the reactor with as few welding seams as possible, the flange and nozzle area of the pressure vessel is forged from a single piece of metal. There are no welding seams between the flange and the nozzles. Combined with the structure of the nozzles, this ensures that there is a considerable distance and a large volume of water between the nozzles and the top of the core. This minimizes the exposure of the structures to neutron radiation.

Internal structures
The internal structures of the reactor pressure vessel support the fuel assemblies in the core, enabling the reactivity of the core to be controlled by the control rods and the fuel to be cooled with water under all circumstances. The inner structures are partly removed during refuelling and can be completely removed for an inspection of the inner wall of the pressure vessel.

The pressure vessel also contains upper internal structures, whose function is to support the top of the fuel assemblies and to keep them correctly aligned axially. These structures include the control rod guide thimbles, whose fastenings and beams are fixed to the control rod support plate and the upper core support plate.

Core barrel
The flange of the core barrel rests on the machined flange of the pressure vessel, and is kept in place by a large spring. The fuel assemblies rest on a perforated core support plate, made of forged stainless steel and welded to the core barrel. Each fuel assembly is positioned by two pins 180° apart.

Neutron reflector (heavy reflector)
There is a steel neutron reflector, heavy reflector, around the polygonal core, between the core and the cylindrical core barrel. The reflector reduces the number of neutrons escaping from the core and flattens the power distribution. It also reduces the exposure of the pressure vessel to the neutron radiation that reduces ductility in its material, and also dampens any pressure spikes which the internal structures and fuel in the reactor might be exposed to in case of pipe break.

The heavy reflector consists of pieces of stainless steel piled up and linked together. The tie rods bolted to the core support plate keep the pieces in place axially. The heat generated in the steel by gamma radiation is absorbed by the primary coolant flowing through cooling ducts in the reflector.
Reactor core properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor thermal power</td>
<td>4,300 MWth</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>155 bar</td>
</tr>
<tr>
<td>Primary coolant temperature in the inlet</td>
<td>296°C</td>
</tr>
<tr>
<td>Primary coolant temperature in the outlet</td>
<td>329°C</td>
</tr>
<tr>
<td>Equivalent diameter</td>
<td>3,767 mm</td>
</tr>
<tr>
<td>Active core height</td>
<td>4,200 mm</td>
</tr>
<tr>
<td>Number of fuel assemblies</td>
<td>241 pcs</td>
</tr>
<tr>
<td>Number of fuel rods</td>
<td>63,865 pcs</td>
</tr>
<tr>
<td>Average linear heat rate</td>
<td>156.1 W/cm</td>
</tr>
</tbody>
</table>

Initial core loading

- Low enriched assembly without gadolinium
- Medium enriched assembly with gadolinium
- High enriched assembly with gadolinium

In-core instrumentation

- 12 lance yokes, each comprising:
 - 3 core outlet temperature sensors
 - 6 in-core neutron flux detectors
 - 3-4 aeroball probes
- 89 control assemblies
- 4 water level probes
- Core external neutron flux measurements
- TC temperature measurement
The OL3 reactor core consists of 241 fuel assemblies identical in structure. For the initial core loading, the assemblies are divided into three groups according to their enrichment level. The two groups with the highest levels of 235U also contain gadolinium, which acts as a neutron absorber and thus reduces the reactivity of the initial phase of the reactor’s operation and flattens the power distribution.

The number and properties of the fuel assemblies replaced annually depend on the fuel management plan chosen, particularly the load pattern and the length of the refuelling interval.

The refuelling interval of the reactor core can be 12 to 24 months.

The primary coolant, due to its composition, is a significant neutron moderator and reflector. The coolant conveys heat from the core at a pressure of approximately 155 bar and a temperature of 312°C on average. The primary coolant contains boron, which absorbs some of the neutrons. Adjusting the boron level helps control changes in reactivity that are fairly slow, such as the impact of fuel burn-up. Rapid changes in reactivity and in power output are controlled using the control assemblies.

The main core properties and operational conditions have been selected to achieve a high thermal power and low fuel costs. The OL3 reactor core is also designed to be adaptable to various refuelling intervals and operating situations.

Core instrumentation

The core power is measured with both internal and external instrumentation. The fixed in-core instrumentation comprises neutron flux and temperature measurements monitoring the distribution of the neutron flux in the core and the temperature distribution in the upper part of the core. Ex-core instrumentation is used for power measurement and also for monitoring core sub-criticality during outages. All the penetrations required for core instrumentation are in the pressure vessel head.

The core power distribution is also measured at regular intervals using the aeroball system. The results thus achieved are used for calibrating fixed in-core neutron flux measurement devices.
Fuel properties

<table>
<thead>
<tr>
<th>Fuel assembly type</th>
<th>17 x 17 HTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fuel rods per assembly</td>
<td>265 pcs</td>
</tr>
<tr>
<td>Number of guide thimbles per assembly</td>
<td>24 pcs</td>
</tr>
<tr>
<td>Number of spacer grids per assembly</td>
<td>10 pcs</td>
</tr>
<tr>
<td>Length of fuel assembly</td>
<td>4.8 m</td>
</tr>
<tr>
<td>Weight of fuel assembly</td>
<td>735 kg</td>
</tr>
<tr>
<td>Width of fuel assembly</td>
<td>213.5 mm</td>
</tr>
<tr>
<td>Cladding material</td>
<td>M5™</td>
</tr>
<tr>
<td>UO₂ pellet density</td>
<td>10.45 g/cm³</td>
</tr>
<tr>
<td>Fuel discharge burnup</td>
<td>45 MWD/kgU</td>
</tr>
</tbody>
</table>
Fuel assembly

A fuel assembly consists of fuel rods, spacer grids and top and bottom nozzles. The guide thimbles, spacer grids and the end pieces form the supporting structure of the assembly.

The fuel rods form a 17 x 17 matrix. Each fuel assembly contains 265 fuel rods, 24 guide thimbles and 10 spacer grids, tied together by end pieces at either end.

The bottom nozzle is shaped to distribute coolant flow evenly. There is also a debris filter at the lower end to prevent any foreign objects that may end up in the primary circuit from entering the fuel assembly; such objects could mechanically damage it. The top nozzle has a leaf spring set on each side to achieve the force with which the fuel assemblies are kept stationary against the primary coolant flow.

The eight middle spacer grids in the fuel assembly are made of zirconium alloy. They have flow guides to enhance heat transfer from the fuel rods. The uppermost and lowermost spacer grids are made of nickel-based alloy because of their higher strength requirements.

Fuel rods

A fuel rod is a tube containing compressed ceramic pellets of uranium dioxide (UO₂). The rods are welded hermetically leak-tight and pressurized using helium. The power of the reactor comes from the fission of the uranium in the pellets, mainly the isotope ²³⁵U. The enrichment level of the pellets varies, being just under 5% at its highest. In some of the fuel rods, the fuel pellets are made of an alloy of UO₂ and Gd₂O₃, the latter helping to reduce reactivity and to flatten the power distribution in fresh fuel rods.

The cladding tubes of the fuel rods are made of a zirconium alloy. The cladding is the first barrier to the release of radioactive emissions as it separates the fuel and their fissile products from the primary coolant. There is space for fission gases within the fuel rod, which reduces the pressure increase caused by gases released from the uranium pellets in the nuclear reaction. The pellets are held in place by a spring inside the top of the fuel rod.
Fuel handling

Fresh fuel assemblies are stored either in the fresh fuel dry storage or in storage racks in the fuel pools where spent assemblies are also stored. During a refuelling outage, some of the spent fuel assemblies in the reactor are replaced with fresh ones. For example, if the reactor is being operated at 12-month cycles, one quarter of fuel is replaced annually. Different kinds of fuel assemblies are placed in the reactor in compliance with the restrictions on the reactor core and fuel use.

Fuel assemblies are moved between the reactor and the fuel building through the fuel transfer tube. There is a fuel handling machine in the reactor building and in the fuel building.

Core unloading takes about 40 hours in all, and core reloading plus a final core inspection using the camera in the refuelling machine takes about 45 hours. The final inspection is intended to ensure the correct placement of fuel assemblies in the core, following the refuelling plan. The Finnish Radiation and Nuclear Safety Authority (STUK), Euratom and the IAEA all participate in each final inspection to ensure the appropriate handling and safeguard measures of reactor fuel.

Spent fuel assemblies that have been in the reactor are kept under water at all times for cooling and radiation protection. Although 1 m of water would be sufficient radiation protection, at Olkiluoto the fuel assemblies are always kept under at least 3 m of water.

Spent fuel assembly handling

After being removed from the reactor, spent fuel assemblies are kept in the spent fuel pools in the fuel building for a few years to cool them off. At the same time, the radioactivity of the spent fuel decreases substantially.

After sufficient cooling, the spent fuel is transported to an interim storage facility at the power plant site using a spent fuel cask which is docked below the spent fuel pool using a transfer facility.

Before placement in the final repository, the spent fuel is kept in interim storage for several decades. During this time, the radioactivity and heat output of the fuel decrease to less than 1/1000 of their original values, making the further handling of the fuel much simpler.

The final repository for spent fuel is being built at Olkiluoto by Posiva Oy, a company which is jointly owned by TVO and Fortum Power and Heat Oy, who will also be responsible for its operation. The spent fuel from the nuclear power plant units in Loviisa will also be deposited at Olkiluoto. Final placement will begin in 2020.
Transferring fuel out of and into the core

The refuelling machine lifts a fuel assembly out of the reactor core and transfers it to the transfer container, which is in a vertical position. The transfer mechanism turns the transfer container to a horizontal position and moves it from the reactor building through the transfer tube to the fuel building. The container is again turned to a vertical position, and the spent fuel mast bridge lifts the fuel assembly out and transfers it to the spent fuel storage rack in the spent fuel pool.

Installing new fuel assemblies in the core is performed using the same process in reverse.

Fuel transfer systems in the reactor building and fuel building
Control rod system properties

Rod cluster control assemblies

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>89 pcs</td>
</tr>
<tr>
<td>Weight</td>
<td>61.7 kg</td>
</tr>
<tr>
<td>Control rods per assembly</td>
<td>24</td>
</tr>
</tbody>
</table>

B4C part (upper part)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>- natural boron</td>
<td>19.9% 10B atoms</td>
</tr>
<tr>
<td>- specific weight</td>
<td>1.79 g/cm³</td>
</tr>
<tr>
<td>- external diameter</td>
<td>8.47 mm</td>
</tr>
<tr>
<td>- length</td>
<td>1,340 mm</td>
</tr>
</tbody>
</table>

AIC part (lower part)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>- weight composition:</td>
<td>80, 15, 5</td>
</tr>
<tr>
<td>- silver, indium, cadmium (%)</td>
<td>80, 15, 5</td>
</tr>
<tr>
<td>- specific weight</td>
<td>10.17 g/cm³</td>
</tr>
<tr>
<td>- external diameter</td>
<td>8.65 mm</td>
</tr>
<tr>
<td>- length</td>
<td>2,900 mm</td>
</tr>
</tbody>
</table>

Cladding

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>stainless steel</td>
</tr>
<tr>
<td>Surface treatment (external surface)</td>
<td>ion nitrification</td>
</tr>
<tr>
<td>External diameter</td>
<td>9.68 mm</td>
</tr>
<tr>
<td>Internal diameter</td>
<td>8.74 mm</td>
</tr>
<tr>
<td>Filling gas</td>
<td>helium</td>
</tr>
</tbody>
</table>

Control rod drive mechanisms

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of drive mechanisms</td>
<td>89 pcs</td>
</tr>
<tr>
<td>Weight</td>
<td>403 kg</td>
</tr>
<tr>
<td>Lifting power</td>
<td>>3,000 N</td>
</tr>
<tr>
<td>Travel range</td>
<td>4,100 mm</td>
</tr>
<tr>
<td>Stepping speed</td>
<td>375 mm/min or 750 mm/min</td>
</tr>
<tr>
<td>Maximum scram time allowed</td>
<td>3.5 sec</td>
</tr>
<tr>
<td>Materials</td>
<td>austenitic and martensitic stainless steel</td>
</tr>
</tbody>
</table>
The control assemblies are one system to control the reactor power. In addition to short-term power control, they also flatten vertical power distribution in the reactor core. In the long term, decreasing the boron content helps compensate for the loss of reactivity due to fuel burnup.

Control rod system
The control rod system is a part of the reactor power control system. It consists of the control assemblies formed with control rods, the control rod drive mechanisms and the control rod drive mechanism operating system. The system is used for controlling the reactor power and for a reactor scram. The control rods enter the core through guide thimbles in the fuel assemblies.

The control rod system is governed by the reactor control, surveillance and limitation system and manually by the control room operators. The reactor scram is triggered automatically by the protection system or its back-up system, a hardwired back-up system. An operator may also trigger the reactor scram manually.

Control assemblies
There are 89 identical control assemblies. Each consists of 24 identical absorber rods attached to a single mount. The rods contain materials that absorb neutrons (silver, indium, cadmium and boron carbide). When the rods are completely inserted into the core, they almost totally cover the active length of the fuel assemblies.

The control assemblies are divided into separate control groups. The majority of them, 53 elements, are in the shut-down bank, which executes a rapid shut-down of the reactor, or reactor scram, if necessary. The remaining 36 elements control the temperature of the primary circuit and flatten vertical power distribution in the reactor core.

The control assemblies in the control bank are further divided into quadruplets, which are used in various drive sequences and insertion sequences depending on the refuelling interval in progress. The current insertion sequence and control assembly banks can be changed at any time regardless of the current reactor power.

The control bank in operation is regularly changed at intervals of about 30 days of power operation. This avoids fuel discharge burnup from affecting the effectiveness of the control and equalizes the burnup.

Control rod drive mechanisms
A control rod drive mechanism consists of the pressure housing with flange connection, the latch unit, the drive rod, the coils and their housings. The role of the control rod drive mechanisms in controlling the reactor is to move the 89 control assemblies throughout the length of the core and to keep them at any location required. Their secondary role is to drop the control assemblies into the reactor, thus stopping the chain reaction and shutting the reactor down in a number of seconds, particularly in a scram situation. When the reactor scram signal is activated, all operating coils are de-energized, the latches are retracted from the rod grooves, and the control assemblies drop into the core by force of gravity.

The control rod drive mechanisms are installed into adapters welded to the reactor pressure vessel head. Each drive mechanism is a separate entity that can be installed and removed independently of the others.
Cross-section of steam generator

Steam generator properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of steam generators</td>
<td>4 pcs</td>
</tr>
<tr>
<td>Heat transfer surface per steam generator</td>
<td>7,960 m²</td>
</tr>
<tr>
<td>Primary circuit design pressure</td>
<td>176 bar</td>
</tr>
<tr>
<td>Primary circuit design temperature</td>
<td>351°C</td>
</tr>
<tr>
<td>Secondary circuit design pressure</td>
<td>100 bar</td>
</tr>
<tr>
<td>Secondary circuit design temperature</td>
<td>311°C</td>
</tr>
<tr>
<td>Heat transfer tube external diameter / wall thickness</td>
<td>19.05 mm / 1.09 mm</td>
</tr>
<tr>
<td>Number of tubes</td>
<td>5,980 pcs</td>
</tr>
<tr>
<td>Triangular pitch</td>
<td>27.43 mm</td>
</tr>
<tr>
<td>Total height</td>
<td>23 m</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Tubes</td>
<td>Inconel 690 alloy, heat treated</td>
</tr>
<tr>
<td>Shell</td>
<td>18 MND 5*</td>
</tr>
<tr>
<td>Cladding tube sheet</td>
<td>Ni-Cr-Fe alloy</td>
</tr>
<tr>
<td>Tube support plates</td>
<td>13% Cr-treated stainless steel</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Total weight</td>
<td>520 t</td>
</tr>
<tr>
<td>Feedwater temperature</td>
<td>230°C</td>
</tr>
<tr>
<td>Main steam moisture content</td>
<td>0.25%</td>
</tr>
<tr>
<td>Main steam flow</td>
<td>2,443 kg/s</td>
</tr>
<tr>
<td>Main steam temperature</td>
<td>293°C</td>
</tr>
<tr>
<td>Main steam saturated pressure</td>
<td>78 bar</td>
</tr>
<tr>
<td>Pressure during hot shut-down</td>
<td>90 bar</td>
</tr>
</tbody>
</table>

*low-alloy ferrite steel
Steam generators

A steam generator is a heat exchanger which transfers heat from the primary coolant circuit to the water in the secondary circuit. As in a typical heat exchanger, the contents of the primary and secondary circuits never come into direct contact with one another. The steam generator in an EPR power plant unit is of the vertical type.

The primary coolant passes through U-shaped tubes in the steam generator. The feedwater of the secondary circuit, which is to be turned into steam, circulates inside the shell of the steam generator. The steam separators and steam dryer at the top of the secondary circuit portion separate the steam from the water. The separated water returns down along the outer shell of the steam generator. The feedwater pipes continuously refill the secondary side of the steam generator with water equivalent to the mass of steam fed into the turbine.

The axial feedwater preheater enables not only a larger heat exchange area but also a saturation pressure of 78 bar, which is a significant factor in the high efficiency (37%) of the power plant unit. The tubes in the steam generator are made of wear-resistant and corrosion-resistant alloy called Inconel 690, which has a cobalt content of less than 0.015%. The shell of the steam generator is made of 18 MND 5 steel.

The design concept, with the cold feedwater being mixed with only 10% of the warmer recirculated water, ensures a larger temperature differential and hence a more efficient heat transfer. As a result, the main steam pressure of the OL3 steam generator is 3 bar higher per unit of heat exchange area than that of power plant units which the design is based on. The efficiency of the steam generator is achieved through the asymmetrical conveying of feedwater into a discrete channel separated from the walls of the steam generator.

In the design of the OL3 steam generators, particular attention was paid to the prevention of cross-flows in the secondary circuit and of the adverse effects caused by thermal layering due to the efficient heat exchange. The steam space has been enlarged, increasing the steam volume.

On the other hand, the steam generator also has a higher water volume than in the power plant units upon which the design is based. This improves the safety margin and increases the grace period in a situation where all feedwater systems malfunction and no cooling water is available for feeding into the steam generator.
Reactor coolant pump and pipe properties

Pump
- Number of pumps: 4 pcs
- Design pressure: 176 bar
- Design temperature: 351°C
- Primary coolant flow: 28,330 m³/h
- Design head: 100.2 m ± 5%
- Seal water injection: 1.8 m³/h
- Seal water return: 0.680 m³/h
- Speed: 1,465 rpm
- Total height: 9.3 m
- Total weight without water and oil: 112 t

Motor
- Rated power: 9,000 kW
- Frequency: 50 Hz

Main circulation pipes
- Internal diameter: 780 mm
- Wall thickness: 76 mm
- Material: Z2 CN 19-10*

Pressurizer connection pipe
- Internal diameter: 325.5 mm
- Thickness: 40.5 mm
- Material: Z2 CN 19-10*

*low carbon stainless austenitic steel

Cross-section of reactor coolant pump

1. Flywheel
2. Radial bearings
3. Thrust bearing
4. Air cooler
5. Oil cooler
6. Motor (stator)
7. Motor (rotor)
8. Motor shaft
9. Spool piece
10. Pump shaft
11. Shaft seal housings
12. Main flange
13. Seal water injection
14. Thermal barrier
15. Diffuser
16. Impeller
17. Pump casing
18. Outlet nozzle
19. Inlet nozzle
Reactor coolant pump

The reactor coolant pumps provide forced circulation of water through the reactor coolant system. This circulation removes heat from the reactor core to the steam generators, where it is transferred to the secondary circuit. In each of the four loops of the primary circuit, the reactor coolant pump is located between the steam generator outlet and the reactor inlet.

The reactor coolant pumps have hydrostatic bearings, which ensure a low vibration level. The OL3 reactor coolant pumps have three separate shaft seals and an additional standstill seal which is operated by gas pressure.

A reactor coolant pump consists of three main parts: the pump itself, the shaft seals and the motor.

The pump hydraulic cell consists of the impeller, the diffuser and the suction adapter. The pump shaft is in two parts connected by a spool piece which can be removed for seal maintenance. The shaft is supported on three bearings: two oil-lubricated bearings in the motor and one hydrostatic bearing at the impeller. There is a double-action thrust bearing at the top of the motor shaft, under the flywheel, to compensate axial forces.

The shaft seal system consists of three dynamic seals assembled into a cartridge and a standstill seal. The first seal is a hydrostatically controlled leakage seal, which takes the full primary pressure. The second seal is a hydrodynamic seal which receives the remaining pressure but can also withstand the entire primary pressure if necessary. The third seal is also hydrodynamic and is a backup leak seal. The standstill seal ensures that no primary coolant is lost in the event of a loss of power or the simultaneous malfunction of all shaft seals when the pump is stopped.

When the pump is in operation, the shaft seals are cooled and lubricated with seal injection water which is injected below the seals at a pressure slightly higher than that of the primary coolant. The third shaft seal, which is a backup to the first two, receives its cooling water from the demineralized water distribution system.

The motor is a drip-proof squirrel-cage asynchronous motor. A spool piece placed between the pump and the motor shafts and the shaft seal housing structure enable maintenance to be carried out on the seal pack without removing the motor.
Pressurizer properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design pressure</td>
<td>176 bar</td>
</tr>
<tr>
<td>Design temperature</td>
<td>362°C</td>
</tr>
<tr>
<td>Total volume</td>
<td>75 m³</td>
</tr>
<tr>
<td>Total length</td>
<td>14.4 m</td>
</tr>
<tr>
<td>Base material</td>
<td>18 MND 5*</td>
</tr>
<tr>
<td>Cylindrical shell thickness</td>
<td>140 mm</td>
</tr>
<tr>
<td>Number of heaters</td>
<td>108</td>
</tr>
<tr>
<td>Total weight, empty</td>
<td>150 t</td>
</tr>
<tr>
<td>Total weight, filled with water</td>
<td>225 t</td>
</tr>
<tr>
<td>Number of safety valves and capacity under design pressure</td>
<td>3 x 300 t/h</td>
</tr>
<tr>
<td>Relief valve capacity under design pressure (doubled for valves)</td>
<td>1 x 900 t/h</td>
</tr>
</tbody>
</table>

* low-alloy ferrite steel
Pressurizer
The pressurizer contains primary coolant in its lower part and steam in its upper part. The pressurizer is part of the primary circuit and is connected through a surge line to the hot leg of one primary loop. The purpose of the pressurizer is to keep the pressure in the primary circuit within specified limits.

The pressure in the primary circuit is controlled by regulating the steam pressure. For this purpose, the pressurizer has heaters in its lower part to produce steam and a spray system in its upper part to condense steam into water.

The pressure-relief and safety valves at the top of the pressurizer protect the primary circuit against excessive pressure. There are two parallel pressure-relief lines with valves which the operators can use, in the case of a severe accident, to relieve pressure quickly in the primary circuit: the primary coolant released from the primary circuit is discharged to the pressurizer relief tank, where a rupture disk breaks and releases the coolant into the containment building. There the steam condenses into water, which is collected in the emergency cooling water storage tank at the bottom of the containment building and pumped back into the reactor.

The maintenance platform running around the pressurizer facilitates heater replacement and reduces radiation doses during valve maintenance.

All components of the pressurizer shell, except for the heater penetrations, are made of forged ferrite steel with two layers of cladding. The material is the same as in the reactor pressure vessel. The heater penetrations are made of stainless steel and are welded using a corrosion-resistant alloy. The pressurizer supports are welded to its frame.

Compared with plants which the design of OL3 is based on, the volume of the pressurizer has been increased in order to smooth the response to operational transients.

Main coolant lines
The main coolant lines of the four loops that form the primary circuit and the pressurizer surge line are part of the reactor coolant system in the reactor building. The main coolant lines convey the primary coolant from the reactor pressure vessel to the steam generators and onward to the reactor coolant pumps, which return the coolant to the pressure vessel. One of the four loops is connected to the pressurizer.

Each of the four loops has three parts: the hot leg from the reactor pressure vessel to the steam generator, the cross-over leg from the steam generator to the reactor coolant pump, and the cold leg from the reactor coolant pump to the reactor pressure vessel.

The main circulation pipes are made of forged austenitic stainless steel, which is resistant to thermal fatigue and can be inspected using ultrasound.

The pressurizer was installed in November 2010.
1 Moisture separator reheater (MSR)
2 High-pressure turbine
3 Low-pressure turbine
4 Condenser
5 Generator
Main steam system
The main steam generated in the steam generators belonging to the primary circuit is fed to the turbine plant through the four main steam lines. The main steam is fed to the high-pressure (HP) turbine through the high pressure turbine stop and control valves located in each main steam line. Every main steam line has a relief train, safety valves and an isolation valve in the event of abnormal operation. The steam is conveyed through the relief system and the safety valves straight into the atmosphere.

The exhaust steam from the HP turbine is dried and reheated in the moisture separator reheaters (MSR). The reheating is performed in two stages, using extracted steam from the HP turbine extraction A7 and from the main steam extracted between the HP turbine stop and control valves.

From the MSRs, the reheater steam goes through the LP turbine stop and control valves to the three LP turbines.

The exhaust steam from the LP turbines is condensed in three separate sea water condenser units. In addition to condensing the steam from the LP turbines, the turbine bypass steam is also condensed in these condenser units.

The purpose of the turbine bypass steam system is to control the main steam pressure depending on the power plant operation mode.

Main condenser and condensate system
There are three condensate extraction pumps (CEP), two pumping the main condensate from the condenser condensate chambers (hot wells) to the feedwater storage tank through the low-pressure feedwater preheating system. The third pump acts as a stand-by pump.

The main condensate is preheated in four low-pressure feedwater heating stages to improve the efficiency of the steam-water process. The main condensate system also contains a mechanical condensate purification system for removing impurities.

Feedwater system
There are four feedwater pumps, three pumping feedwater from the feedwater storage tank through the high pressure feedwater preheating system to the steam generators. The fourth pump acts as a stand-by pump.

The feedwater is preheated in three feedwater heating stages in two trains, each train consisting of two high-pressure feedwater preheaters and the reheating stage 2 condensate coolers. The steam is extracted into the high-pressure feedwater preheaters from the HP turbine extractions A7 and A6. From the preheating system, the feedwater is conveyed through the feedwater valves in the safeguard building divisions into the steam generators.
The HP turbine is a double-flow turbine consisting of inner and outer casing structures split horizontally.

Turbine plant main figures

General
- Gross electrical output: 1,720 MWe
- Net electrical output: 1,600 MWe
- Main steam pressure (HP turbine): 75.5 bar
- Main steam temperature: 290°C
- Steam flow: 2,443 kg/s
- Rated speed: 1,500 r.p.m.
- HP turbine: 1
- LP turbine: 3

Last expansion stage
- Exhaust area: 30 m²
- Last stage blade (LSB) airfoil length: 1,830 mm
- Overall diameter: 6,720 mm

Length of turbine-generator rotor train: 68 m

Condenser
- Cooling surface: 110,000 m²
- Cooling medium: sea water
- Cooling water flow: 53 m³/s
- Vacuum at full load: 24.7 mbar abs.
- Sea water temperature rise: 12°C

Feedwater
- Preheating stages: 7
- Final feedwater temperature: 230°C
The thermal energy generated in the reactor is converted to mechanical energy by the turbines and then to electricity by the generator. The high 1,600 MWe power output of OL3 is partly due to the high efficiency of the turbine-generator set.

The single-shaft turbine-generator set consists of one HP turbine and three LP turbines, a generator and an exciter. Each turbine rotor is mounted on two bearings, i.e. there are double bearings between each turbine module.

The rated speed of the turbine-generator is 1,500 r.p.m., and its shaft length is 68 m. The planned service life of the replaceable components of the turbine is 30 years, and the planned service life of the turbine plant as a whole is 60 years.

HP turbine

The OL3 HP turbine produces about 40% of the gross power output of the power plant unit (650 MWe). It is a admission double-flow reaction turbine consisting of following main components:

- inner casing (cast, machined)
- outer casing (cast, machined)
- rotor (6.26 m and 100 t, forged and machined)
- 12 expansion stages, stationary blade and running blade stages

The inner and outer casings of the HP turbine are formed with horizontally split inner and outer casing constructions. The inner casing is attached to the outer casing construction. The stationary blades of the HP turbine and the running blade seal strips are attached to the HP turbine inner casing. The shaft seal constructions are attached to the HP turbine outer casing.

The HP turbine rotor is machined from the forging. The running blades of the rotor and the stationary blade seal strips are attached to the rotor machined blade and seal strip grooves.

The thermal energy generated in the reactor is converted to mechanical energy by the turbines and then to electricity by the generator. The high 1,600 MWe power output of OL3 is partly due to the high efficiency of the turbine-generator set.

The single-shaft turbine-generator set consists of one HP turbine and three LP turbines, a generator and an exciter. Each turbine rotor is mounted on two bearings, i.e. there are double bearings between each turbine module.

The rated speed of the turbine-generator is 1,500 r.p.m., and its shaft length is 68 m. The planned service life of the replaceable components of the turbine is 30 years, and the planned service life of the turbine plant as a whole is 60 years.

LP turbines

The three OL3 LP turbines produce approximately 60% of the gross power output of the power plant unit (approximately 320 MWe each). LP turbines are double-flow reaction turbines consisting of following main components:

- inner casings
- outer casings
- 9 expansion stages, stationary blade and running blade stages (6 stages with shrouded blades and 3 stages as free-standing blades)
- rotor (forged and machined spindle shaft where shrink-on fitted forged and machined blade wheel discs)

The inner and outer casings of the LP turbines consist of inner and outer casing constructions split horizontally. The inner casing of an LP turbine is attached to the turbine foundation structure, and the outer casing is welded permanently to the condenser construction, which is supported by the base foundation structures. The stationary blades and running blade seal strips are attached to the inner casing structures. The thermal expansion of the outer casing structures is separated from the inner casing and rotor construction of the LP turbines.

The LP turbine rotor consists of a through-bored spindle shaft with eight blade wheel discs (four for each flow) shrink-on fitted. The coupling flanges of the LP turbine rotors are also partly secured to the rotor shaft with a shrink-on fit.

The running blades and stationary blade seal strips of the LP turbine are attached to grooves machined in the blade wheel discs. The first six running blade stages are so called drum stages and have blade bands, and the last three blade stages are so called free-standing blades. The exhaust area of the last running blade stage is 30 m², produced by the 1,830 mm profile length of the last running stage blades (LSB). The stationary blades in the last stage are hollow vane type, and part of moisture of the expanding steam is separated via cuts on the hollow vane before the LSB stage.
1. Water tank
2. Four hydrogen / water heat exchangers
3. Fan
4. Shaft seals

Generator properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated speed</td>
<td>1,500 r.p.m.</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Effective power</td>
<td>1,793 MWel</td>
</tr>
<tr>
<td>Nominal rating</td>
<td>1,992 MVA</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.9</td>
</tr>
<tr>
<td>Voltage</td>
<td>27 kV ± 5%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>ca. 99%</td>
</tr>
<tr>
<td>Magnetization current</td>
<td>9,471 A</td>
</tr>
<tr>
<td>Cooling water temperature</td>
<td>45°C</td>
</tr>
<tr>
<td>Hydrogen cooling medium temp.</td>
<td>40°C</td>
</tr>
</tbody>
</table>
Generator
The OL3 generator is a four-pole, hydrogen-cooled generator with a brushless excitation system. The stator winding and the winding terminals are water-cooled. The rotor windings are cooled using hydrogen, which is conveyed axially through the windings at a pressure of 5 bar. The hydrogen is cooled in the hydrogen/water heat exchangers. The hydrogen circuit inside the generator is powered by a multi-stage fan mounted on the rotor.

The generator output terminals transfer the electricity generated through the bus duct to the main transformer and onward to the national grid.

The hydrogen-cooled generator rotor rotates at 1,500 r.p.m., weighs 250 t and is almost 17 m long.
Secondary circuit

Construction of cooling water tubes for condenser unit.

Condenser unit from the inside.

Two of the three turbine island condenser pumps are in use, one is a standby pump.
The exhaust steam from the LP turbines is condensed into water in the condenser. There is a condenser unit under each LP turbine, divided into two separate sea water chambers. The structural design allows one sea water chamber to be removed and inspected without turbine shut-down.

In addition to condensing the exhaust steam from the LP turbines, the condenser receives condensate and gas flows extracted from various process systems.

The condenser has a total cooling surface of about 110,000 m2. The tube material used is titanium, which is highly resistant to sea water corrosion. The sea water used as coolant is fed into the tubes through the water chambers. The temperature rise of the cooling water in the condenser is about 12°C.

The condenser tubes are cleaned by feeding soft cleaning balls (Taprogge) into the cooling water flow and collecting them once they have passed through the condenser tubes.

The condenser must have a sufficient low vacuum in order to increase the power plant efficiency. The vacuum pump system maintains a sufficient vacuum in the condenser by extracting air and uncondensed gases.
A = Cooling water systems
B = Service water system
C = Anti-icing system
D = Essential service water piping system
E = Essential service water system pumping station
F = Anti-icing pumps
G = Circulating water
Sea water is conveyed along its own underground cooling water tunnel at a rate of 57 m³/s into the OL3 pump station. Before entering the tunnel, major impurities are filtered out of the sea water with coarse screens. In the pumping station, the water is conveyed through four filtering lines to the sea water pumps. The filtering lines contain a fine screen and a chain basket filter to remove minor impurities from the sea water.

The pumping station contains four sea water pumps, which are vertically mounted in a concrete casing. Each pump conveys about 13 m³/s of sea water to the condensers. To cool the power plant systems, 4 m³/s of the total sea water flow is used. From the condenser, the water goes to a seal pit and then through the outfall tunnel to the sea. The outfall channel is shared with OL1 and OL2.
The safety system consists of four parallel trains, each capable of performing the required safeguard function on its own. The four parallel trains are located in separate buildings on different sides of the reactor building to eliminate the possibility of simultaneous failure.
NUCLEAR SAFETY

The general objective is to ensure the safety of the nuclear power plant so that its use causes no radiation risks to the health of employees or of people living in the vicinity, nor any other damage to the environment or property. The general principle is that no radioactive substances must ever be released into the environment.

In case of abnormal operation, OL3 has safety systems consisting of four redundant subsystems, each capable of performing the required safety function on its own.

Three functions are a prerequisite to ensure reactor safety under all circumstances:
1. Control of the chain reaction and of the power generated by it.
2. Cooling of the fuel also after the chain reaction has stopped, i.e. removal of residual heat.
3. Isolation of radioactive products from the environment.

Reactor safety is based on three protective barriers to prevent radioactive releases and on the defence-in-depth principle.

Three protective barriers
The concept of three protective barriers refers to a series of strong and leak-tight physical barriers between radioactive products and the environment. The barriers prevent releases of radioactive products in all circumstances.

First barrier
The uranium fuel in which radioactive products are formed is enclosed in a metal fuel rod cladding.

Second barrier
The primary circuit is a closed circuit made of thick steel. The reactor pressure vessel forms part of this circuit. The uranium fuel encased in metal fuel rods is within this vessel in the reactor core.

Third barrier
The primary circuit is completely enclosed by the leak-tight containment with massive concrete walls. The double concrete walls of the OL3 containment are built on a thick base slab, and the inner containment is covered with a leak-tight metal liner.

Any one of these barriers is tight enough to ensure that no radioactive materials can be released into the environment.

Safety features of OL3
OL3 represents evolutionary technology developed on the basis of the most recent German Konvoi plants and French N4 plants. The operating experience from these plants has been carefully studied and considered for the design of OL3. In the development process, the main focus has been on safety systems and the prevention of severe reactor accidents, as well as minimizing the damage caused by an accident.

The design of the safety systems is based on quadruple redundancy of systems. It means that the systems consist of four parallel trains, each capable of performing the required safety task on its own. The four trains are physically separated and located in different parts of the reactor building in independent divisions.

Each of the four safeguard building divisions contains a low and medium-pressure emergency cooling system with the closed cooling and essential service water circuits cooling them, the steam generator emergency feedwater system, and the electrical equipment and instrumentation and control systems required for these systems.
Examples of principal safety features of Olkiluoto 3

- Emergency cooling water storage tank (in-containment refuelling water storage tank)
- Double containment (ventilation, filtering)
- Containment heat removal system
- Core melt spreading area
- Safety systems: four-fold redundancy
Nuclear safety

The emergency cooling systems take their water from the in-containment emergency cooling water storage tank.

The probability of a serious reactor accident has been further reduced compared with earlier power plants by enhancing preventive systems. The OL3 systems have also been further developed to drastically limit the consequences of a severe accident.

Safety design

All the reactor protection and safety functions required to be instantly activated in an abnormal operating situation or accident are based on automatic systems. This allows for a planning period of 30 minutes for corrective actions by the plant control room.

The OL3 safety design is based on the concept that in the event of abnormal operation, the plant will automatically be transferred to a controlled state known as a hot shut-down and further, by manual control, to a stable cold shut-down. The controlled state is achieved by using the emergency feedwater system, the main steam relief train and the primary circuit emergency boron injection system. The level at which the residual heat removal system can operate (30 bar and 180°C) is attained by cooling through the secondary circuit and by lowering the pressure in the primary circuit. The emergency cooling or residual heat removal systems are then used to attain cold shut-down.

The volumes of the largest reactor components, i.e. the pressure vessel, the steam generators and the pressurizer, have been increased over previous plant designs to slow down the time progression of the reactor transients and to give the operators more time to initiate corrective actions.

The large steam volume of the steam generator means that it takes a long time to fill with water from the primary circuit in case of a ruptured heat transfer tube. The steam is conveyed from the damaged steam generator primarily to the condenser through the turbine bypass valves and not straight into atmosphere. When the condenser is not available, environmental releases from any leak between the primary and secondary circuits in the steam generators are minimized by lowering pressure through the turbine bypass relief valves and automatic isolation of the damaged steam generator. The activation pressure levels of the OL3 emergency cooling systems are lower than the pressure levels that open the steam generator safety valves so that in case of a leak between the primary and secondary circuits, the steam generator safety valves will not be actuated.

Emergency core cooling and residual heat removal system

The emergency core cooling system consists of low and medium-pressure injection pumps, nitrogen-pressurized pressure accumulators and the in-containment refuelling water storage tank. Under normal use, the system functions as a residual heat removal system when the plant unit is being powered down to a cold shut-down. The system consists of four separate divisions, each of which can independently pump water into the primary circuit using the low and medium-pressure injection pumps. Each subsystem is housed in its own safeguard building division and feeds into a different one of the four loops of the primary circuit. This arrangement ensures sufficient cooling capacity in case of loss of coolant.

Emergency boron injection

This design concept counteracts the rare event of a failed reactor scram. If the control assemblies fail to drop when the automatic scram conditions are actuated, the reactor coolant pumps stop and the emergency boron injection system, which has two lines and three pumps, starts up. The piston pumps used for emergency boron injection can pump boron-containing water at pressures up to 260 bar.

Residual heat removal

During normal use or in case of an accident, the excess energy and residual heat produced by the fuel can be transferred through the steam generators to the secondary circuit. The steam generators are provided with water through the feedwater system during normal use and the emergency feedwater system in case of an accident.
Nuclear safety

The emergency feedwater system consists of four separate parallel subsystems that are independent of each other, each of which feeds water into one of the steam generators. Each injection pump has its own emergency feedwater tank. The tanks and systems are housed in separate compartments in the safeguard building divisions.

Residual heat can be removed either through the steam generators to the secondary circuit and then through the condensers to the sea or by release of steam into the outside air through the main steam relief trains. In case of a complete coolant loss in the secondary circuit, pressure in the primary circuit can be lowered by steam discharge into the containment through the pressurizer relief lines or safety valves. In such cases, make-up water is injected into the primary circuit using the low and medium-pressure injection pumps, and the 2,000-tonne in-containment refuelling water storage tank is cooled using an intermediate cooling circuit powered by an emergency diesel generator, or using the independent containment heat removal system. Heat is transferred through the cooling chain formed by the reactor cooling system, the closed cooling water system and essential service water system to the ultimate heat sink. The suction pipes of the safety systems have a guard pipe up to the first isolation valve to prevent water loss in case of a suction pipe break.

Essential service water system
The essential service water system is a safety system consisting of four physically separated pumping chains housed in the four safeguard building divisions. The system transfers heat from the heat exchangers of the closed cooling water system, which cools the safety systems, to the sea.

In addition to the four main chains, the essential service water system has two dedicated pumping chains which form part of the independent heat transfer chain that is used in case of a severe accident.

Preparedness for severe reactor accidents
In the design of OL3, a severe reactor accident is addressed: even if the multiple redundant and independent safety systems were all to fail, the impact of the event beyond the power plant site would be minor in terms of both time and range.

Situations that would result in a release of any significant amounts of radioactive products into the environment have been virtually eliminated.

The integrity of the reactor containment building in case of a core meltdown is ensured with structures that retard the progression of core melt and a passive core melt cooling system. At the bottom of the containment, there is a core melt spreading area consisting of a metal structure (core catcher) covered with a 10 cm layer of sacrificial concrete. The purpose of the catcher is to cool the core melt and to protect the base slab of the reactor building against damage that might lead to leaks. Water circulates in cooling channels under the core melt spreading area, and water will also rise above the core melt. The large area of the core catcher (170 m²) ensures cooling of the core melt.

If the reactor pressure vessel fails, the core melt is collected at the bottom of the reactor pit. The transfer of core melt from the reactor pit into the spreading area is initiated as a passive event, with the hot core melt forcing its way through the aluminium plug into the core catcher. The 50 cm layer of sacrificial concrete over the aluminium plug melts into the core melt, delaying the failure of the plug until all the core melt has accumulated in the reactor pit under the pressure vessel.

As the core melt enters the spreading area, the cooling system is passively activated. The sacrificial concrete over the core catcher melts into the core melt. Cooling continues as a passive process with water from a tank inside the reactor containment, flowing down by gravity into the channels under the core catcher and onto the core melt.

The efficiency of the cooling system is sufficient to solidify the core melt within a few days, after which the post-accident long-term management can begin.
Core melt cooling system

In the highly unlikely event of a core meltdown at OL3, the core melt is transferred to the core melt spreading area, where it is cooled and solidified.
Coolant handling system

- Coolant degassing
- Coolant purification
- Coolant storage
- Boron-containing make-up water
- Make-up water

- Coolant storage
- Boron-containing make-up water
- Make-up water

- Emergency cooling water storage tank (IRWST)
- Gas treatment
- Volume control tank
- Emergency cooling water storage tank (IRWST)

- Gaseous waste processing system
- Reactor coolant pump seal injection and leak-off system
- Component cooling water system
- High-pressure heat exchanger
- Component cooling water system
- Charging line
- Low pressure reducing station
- Sampling system

- CCWS
- Heat exchanger
- Letdown
- Auxiliary spray
- Sampling system
- Coolant degassing

- Loop 1
- Loop 2
- Loop 3
- Loop 4

- Reactor pressure vessel
- Pressurizer

- Reactor coolant pump seal injection and leak-off system
- Coolant degassing

- Coolant purification

- Emergency cooling water storage tank (IRWST)

- Coolant storage

- Boron-containing make-up water

- Make-up water

- Gaseous waste processing system

- Volume control tank

- Emergency cooling water storage tank (IRWST)

- Gas treatment

- Nz

- H2
WATER CHEMISTRY AND VOLUME CONTROL SYSTEMS

OL3 has a total of about 120 process systems for handling liquid, steam and gas flows. The chemical and volume control system of the reactor plant is an essential one, acting as an interface between the high-pressure primary circuit and the low-pressure systems.

The coolant treatment systems manage the boron content in the primary circuit coolant, water chemistry, purification of the circulating coolant, injection and control of chemicals, dissolved gases in the coolant; and the degassing, handling and storage of extracted coolant in various situations. The systems are also used for preparing, storing and injecting the boron solution needed for various systems in the plant. During outages, the systems ensure the availability of make-up water needed in the draining and refilling of the primary circuit.

The most important of the coolant treatment systems is the chemical and volume control system, which is directly connected to the regulation of the chemical and physical properties of the coolant in the primary circuit, e.g. its boron content and volume.

The chemical and volume control system also manages the reactor coolant pump seal injection and leak-off. The volume control system inlet line is also the source of coolant for the pressurizer auxiliary spray system, which helps lower pressure in the pressurizer.

Boron is used in OL3 in the form of boric acid dissolved in water. The boron content of the primary circuit coolant is regulated by adding either pure water or boric acid solution to the coolant fed into the circuit, as required. The volume of the coolant added to and extracted from the primary circuit must be consistent with the running situation.

Boron and make-up water system

The boron in the coolant is enriched with regard to one of its two natural isotopes (10B, ca. 30–32% by weight). Its purpose is to compensate for residual reactivity in the reactor core. The boric acid solution is stored at a concentration of 4%, which corresponds to about 7,000 ppm of boron. All the solutions required for the plant systems are made from this storage solution, using pure ion-exchanged water for diluting.

Controlling core reactivity

Core reactivity is at its highest at the beginning of the refuelling interval because of the fresh fuel. When fresh fuel is loaded into the core, all control rod assemblies are inserted, and the primary circuit, the reactor pool and the transfer pool are filled with a boron solution whose concentration is about 1,550 ppm. The boron injection system is always used when the reactor is powered down to a cold shut-down, so as to ensure the sub-critical state of the reactor regardless of its temperature. When the reactor is powered up, the control rod assemblies are first retracted, after which the boron level rod in the primary circuit is decreased by diluting until the critical level is reached. The boron level maintained during use is always less than 1,200 ppm.

Slow changes in power output over the long term and the decline in the neutron flux due to fuel discharge burnup are compensated for by lowering the boron level gradually until it reaches a level of about 5 ppm just before refuelling.
Instrumentation & control systems architecture

Functional levels of instrumentation & control system according to the safety concept

- **Process I&C systems**: Control plant operations under normal circumstances
- **Limitation systems**: Correct the state of the plant so that protection systems do not need to be activated
- **Protection systems**: Initiate the required protection function (reactor scram and protection system control)

Hardwired safety automation system
- Required control actions are taken manually by the operators from conventional hardwired panels in MCR

I&C system for severe reactor accidents
- Provides necessary information for operator action as well as information on the plant state and the effects of the accident and the mitigation action to enable an assessment of the accident sequence and the possible environmental impact.
Instrumentation and control (I&C) systems consist of field instrumentation, control systems as well as I&C user interfaces used for the monitoring and control of the plant.

Safety and availability have been emphasised in the design of I&C systems for OL3. The I&C systems of the plant unit are fully automated using proven digital technology, backed up by conventional hardwired technology.

Design bases

The functions and equipment of the I&C systems, just like all other systems, are classified according to their nuclear safety significance. The equipment used to implement the I&C systems fulfil the quality requirements based on the respective safety classification. The OL3 I&C systems and the associated functions and equipment are designed to comply with the general principles of nuclear safety, including physical and functional separation, diversity and redundancy. For example, the emergency cooling system and the emergency feedwater system, each consisting of four redundant and independent sub-systems, also have four redundant and independent control system subsystems.

According to the design basis of the plant, the protection I&C shall be capable of responding to transients and accidents for the first thirty minutes without operator intervention. This gives the operators time to establish the cause of the transient and to investigate the required transient and emergency procedures. The monitoring and control of the plant is implemented using the workstation-based user interface in the main control room. Each operator has a specific work area in the main control room, with several display screens, which present the information on the basis of which the operators carry out the actions required for the control and monitoring of the plant. A conventional hardwired panel is provided for use as backup in case of the workstation-based user interface is not available. The unit can be brought to a safe shutdown state in a controlled manner also from a remote shutdown station, if necessary.

Architecture

The I&C architecture is designed to follow the defence-in-depth principle. The following functional levels have been defined to ensure safety:

1. The process I&C systems, which maintain the state of the plant unit within normal operating parameters.
2. Limitation systems, which take corrective action to restore normal operation if normal operating parameters are exceeded.
3. The reactor protection system, which automatically initiates the required safety functions (reactor scram and any situation-specific action required), if the plant or process parameters exceed any of the protection system limit values.
4. The hardwired safety automation system, which is independent of the other I&C systems and can be used if the digital I&C systems are lost.
5. The severe accident management system, which is independent of the other I&C systems and used for the severe accident management.

I&C system functions

All the subsystems of the I&C system (measurements, controls, instrumentation, user interface) are divided into different levels by functions:

- Level 0 (process instrumentation or process interface) consists of e.g. sensors and switches.
- Level 1 (I&C system level) consists of control loops involved in reactor protection, reactor control, surveillance and limitation functions, safety and process automation.
- Level 2 (process monitoring and control) consists of the user interfaces, i.e. the workstations, the control panels in the main control room, the remote shutdown station and the technical support centre. Level 2 also comprises the I&C systems, which link user interfaces to system-level I&C.
Simplified schematic of the Olkiluoto 3 power plant unit
The electrical power systems have two purposes: to transfer the electricity generated into the external grid and to supply and distribute the electricity needed by the power plant itself. The former function involves the generator busbar, the main transformer and the 400 kV switchyard and power line. The latter function involves the auxiliary unit transformers, medium-voltage switchgear, diesel generators and low-voltage distribution network.

The generator busbars between the generator and the main transformer are independent, single-phase busbars with earthed metal cladding. The main transformer consists of three single-phase units. The transformer is cooled with oil running through the coils, which is cooled by a separate, external water-cooling circuit.

The electricity needed by the power plant itself is taken from the 400 kV grid through two auxiliary unit transformers, which are backed up by an auxiliary stand-by transformer connected to the 110 kV grid. These two power supplies are independent of one another.

The reactor plant electrical power system is divided into four parallel and physically separated sub-divisions. The power supply to equipment critical for the safety of each division is backed up with a 7.8 MVA diesel generator. The busbars of the diesel generators can also be supplied by the Olkiluoto gas turbine plant.

The systems are designed to ensure sufficient capacity for maintaining nuclear safety even if one division fails and another is simultaneously out of operation due to maintenance.

Safety-critical systems are connected to backed-up electrical power systems. These are systems that ensure safe reactor shutdown and residual heat removal and prevent the spreading of radioactivity.

In case of the loss of all external power supplies, the malfunction of all four diesel generators at once, i.e. the complete loss of all AC power, the plant unit has two smaller diesel generators with an output of approximately 3 MVA each. These ensure power supply to safety-critical systems even in such a highly exceptional situation.
1. Radioactive water from primary circuit and fuel pools, and decontamination water
2. Low-level radioactive water, e.g. from laundry and washrooms
3. Possibly radioactive water from the steam generator dump valves

* Waste separated in centrifugal apparatus is also dried by vacuum heating (drying station) and the waste drying drum is then filled with concentrated waste to be further solidified
Radioactive waste is classified on the basis of its radioactivity and physical and chemical properties. Each type of waste is processed appropriately. High-level radioactive waste is kept separate from low-level radioactive waste at all times, and there are separate processing lines for different types of solid, liquid and gaseous waste.

Solid operating waste

Solid operating waste is divided into low-level waste and intermediate-level waste. No solid waste classified as intermediate-level waste requiring final disposal is produced, in substance, at the OL3 unit.

Low-level waste comprises materials and substances contaminated with radioactivity. Such material includes fire-resistant fabrics, plastic covers, protective clothing, and low-active components, such as seals, removed from the systems. Low-active waste is divided into the following groups; mixed maintenance waste, scrap metal, waste dried in a barrel, filter elements, filter inserts and solidified mixed liquids.

Processing of mixed maintenance waste and scrap metal

So-called small items representing low-level waste are collected at the point where they are produced either into plastic bags or directly into 200-litre steel barrels and transported to the sorting facility for sorting according to their activity content and type. Waste collected into bags is later packed in barrels. The compactable waste packed in barrels is compacted to a smaller volume in the barrels and some of the barrels are also compressed to half of the original size in vertical direction. Large items are packed either in steel boxes or directly in concrete boxes, and the barrels are also placed in concrete boxes before they are emplaced in the operating waste repository for final disposal. Mixed maintenance waste is very low-level waste as a rule.

Processing of filter elements and waste dried in barrels

Waste dried in barrels primarily consists of evaporator concentrates, tank bottom sludge, ion exchange resin and filter elements used in the purification of process water. Waste of this type is first stored in tanks and then mixed in a drying process.

The ion exchange resins, evaporator concentrates and other sludges are after tank storage dried in the barrel drying facility provided in the waste processing building of OL3. A filter element can be placed in the barrel before the drying is started. The filter element will then become enclosed in the drying material. The waste to be dried is placed in a 200-litre barrel and dried through heating in a vacuum, until 90% of the waste is dry. Heating is continued at a temperature of ca. 130°C until all water has evaporated. The condensed water is returned to the liquid waste processing system.

The initial activity level of the waste and filter elements dried in barrels can be equal to intermediate-level waste. These waste groups are first stored inside the OL3 unit, before they are transferred to TVO’s interim storage for intermediate-level waste, where the waste is kept until Co-60, which is the primary (>90%) nuclide making the waste radioactive, has undergone 5–10 half-lives. After that the waste can be emplaced for final disposal in the operating waste repository like other low-level waste.

Processing of solidified mixed waste

Solidified mixed waste includes e.g. different waste oils contaminated with activity. The activity of the waste oil is measured and the oil is placed in 200-litre barrels for solidification in the system already used for waste generated at OL1 and OL2.

Final disposal

The solid operating waste produced at OL3 is placed in concrete boxes and transferred for final disposal to the operating waste repository located in Olkiluoto. The repository is also used for final disposal of operating waste generated at OL1 and OL2. Accurate records are...
Waste processing systems

Offgases are delayed, filtered and conveyed from the plant into the atmosphere through a 100-metre-high ventilation stack.

maintained of all solid waste emplaced in the repository (activity data and location in the repository).

Liquid waste

All water removed from the unit is collected from the liquid waste collection and processing systems into inspection tanks where samples are taken for activity measurements and chemical analyses. When an acceptable inspection result is obtained, separate permission is issued to discharge the water from the unit.

Gaseous waste

Gaseous radioactive waste mostly consists of fission gases released from the nuclear fuel and dissolved in the primary coolant and in the airspace of the tanks of the associated auxiliary systems. These fission gases include e.g. noble gases Krypton and Xenon. The concentrations of the fission gases, the hydrogen added to create the chemical conditions required by the reactor coolant, and other dissolved gases are controlled in the degasifier, which is included in the chemical and volume control system of the primary circuit. If necessary, the gases dissolved in the coolant can be removed completely. The amount of fission gases in the coolant is proportional to the integrity of the fuel. Light water reactors also produce gaseous waste, when neutron radiation activates the natural Argon contained in air and present in the airspace that surrounds the structures of the reactor pressure vessel. A residual concentration of Argon can also be dissolved in the primary coolant. Argon-41 is a short-lived isotope with a half-life of less than two hours.

In order to minimize gas emissions, a gaseous waste processing system based on a semi-enclosed circuit has been selected. It consists of two parts: the flushing unit and the delay unit. The flushing unit is designed to receive gas from the degasifier and the coolant storage tanks, to reduce the hydrogen concentration of these gases catalytically by converting hydrogen gas into water, and to flush with inert nitrogen gas various storage tanks where waste gases may accumulate. The pressurised active carbon filters of the delay unit are designed to retain radioactive noble gases (Xenon, Krypton) so as to reduce their radioactivity to an acceptable level before the gases are released. From the delay unit the gases are released for further processing into a ventilation system equipped with separate filters. Plant start-up and shut-down, process actions and events such as nitrogen flushing of the reactor pressure vessel head can cause a substantial gas flow to the gaseous waste processing system.

The overflow is in this case conveyed through the active carbon filter units of the delay unit in the pressurised part of the system and further through the mechanical coarse and micro filters to the vent stack. The activity level of the gas flow is analysed in the ventilation system and if an excessive activity level is detected, the gas flow is diverted after the mechanical filters further to an iodine-treated active carbon filter system. The mechanical filters of the ventilation system retain any active aerosols and other small particles possibly contained in the waste air. The iodine-treated active carbon filters of the same system bind any radioactive iodine possibly introduced into the waste gas as a result of e.g. severe fuel damage.

The systems involved in the processing of waste gases are designed to either completely retain or delay the radioactive materials contained in the gas flow until their activity has been reduced to an acceptable level. The activity of all gases released from the plant is finally monitored with continuously operating activity measurements in the vent stack.
A special vehicle takes the waste packages to the Olkiluoto disposal repository.
Part of the OL3 power plant supply to TVO will include a full-scope training simulator, which will be completed and ready for use one year before the first fuel loading of the power plant unit. The simulator can replicate exactly the functions of the new unit, and the simulator control room is a full-scale replica of the real one. The simulator will mainly be used for operator training before the power plant unit is started up, and subsequently for annual supplementary training.

The purpose of the training simulator is for personnel to practise all possible events that may occur at the power plant unit, including transients and accidents, and to validate operation, abnormal operation and emergency operation procedures.

The plant supplier is responsible for designing and building the simulator together with several well-known suppliers in the field. The simulator and its auxiliary facilities will be housed in a new annexe to be built at the existing TVO training centre.

3D process models are utilized in training the nuclear power plant operators.
Technical data

General
- **Reactor thermal power**: 4,300 MWth
- **Electrical power, gross**: 1,720 MWe
- **Efficiency**: ca. 37%
- **Primary coolant flow**: 23,135 kg/s
- **Reactor operating pressure**: 155 bar
- **Coolant temperature in the reactor pressure vessel, average**: 312°C
- **Coolant temperature in the hot leg**: 328°C
- **Coolant temperature in the cold leg**: 296°C
- **Reactor operating pressure**: 155 bar
- **Coolant temperature in the hot leg**: 328°C
- **Coolant temperature in the cold leg**: 296°C
- **Electricity output per year**: ca. 13 TWh
- **Sea water flow**: 57 m³/s
- **Service life**: ca. 60 years
- **Building volume**: 1,000,000 m³
- **Containment volume**: 80,000 m³
- **Containment design pressure**: 5.3 bar

Reactor core
- **Number of fuel assemblies**: 241
- **Active core height**: 4.2 m
- **Core diameter**: 3.77 m
- **Total fuel weight**: ca. 128 tU
- **Fuel enrichment level, initial core loading**: 1.9%—3.3% 235U
- **Fuel enrichment level, reloading**: 1.9%—4.9% 235U
- **Fuel consumption per year**: ca. 32 tU
- **Fuel consumption per year**: ca. 60 assemblies

Fuel
- **Fuel**: uranium dioxide UO₂
- **Assembly type**: 17x17 HTP
- **Fuel rods per assembly**: 265
- **Guide thimbles per assembly**: 24
- **Spacer grids per assembly**: 10
- **Length of fuel assembly**: 4.8 m
- **Weight of fuel assembly**: 735 kg
- **Width of fuel assembly**: 213.5 mm
- **Cladding material**: M5™
- **UO₂ pellet density**: 10.45 g/cm³
- **Fuel discharge burnup**: 45 MWd/kgU

Control assemblies
- **Number of control assemblies**: 89
- **Absorber length**:
 - lower part: 2,900 mm
 - upper part: 1,340 mm
 - total length: 4,240 mm
- **Absorber material**:
 - lower part: silver, indium, cadmium
 - upper part: boron carbide

Pressure vessel
- **Inner diameter**: 4.9 m
- **Inner height**: 12.3 m
- **Wall thickness**: 250 mm
- **Bottom thickness**: 145 mm
- **Thickness of stainless steel cladding**: 7.5 mm
- **Design pressure**: 176 bar
- **Design temperature**: 351°C
- **Weight with cover**: 526 t
Turbine plant

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine generator unit</td>
<td>1</td>
</tr>
<tr>
<td>Gross electrical output</td>
<td>ca. 1,720 MW</td>
</tr>
<tr>
<td>Main steam pressure</td>
<td>75.5 bar</td>
</tr>
<tr>
<td>Steam temperature</td>
<td>290°C</td>
</tr>
<tr>
<td>Steam flow</td>
<td>2,443 kg/s</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1,500 r.p.m.</td>
</tr>
<tr>
<td>HP turbine</td>
<td>1</td>
</tr>
<tr>
<td>LP turbine</td>
<td>3</td>
</tr>
<tr>
<td>HP turbine stop and control valves</td>
<td>4/4</td>
</tr>
<tr>
<td>LP turbine stop and control valves</td>
<td>6/6</td>
</tr>
<tr>
<td>Last stage</td>
<td></td>
</tr>
<tr>
<td>- exit annulus area</td>
<td>30 m²</td>
</tr>
<tr>
<td>- blade length</td>
<td>1,830 mm</td>
</tr>
<tr>
<td>- overall diameter</td>
<td>6,720 mm</td>
</tr>
<tr>
<td>Turbine-generator shaft length</td>
<td>68 m</td>
</tr>
</tbody>
</table>

Condenser

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling surface</td>
<td>110,000 m²</td>
</tr>
<tr>
<td>Cooling medium</td>
<td>sea water</td>
</tr>
<tr>
<td>Sea water flow</td>
<td>53 m³/s</td>
</tr>
<tr>
<td>Vacuum at full load</td>
<td>24.7 mbar</td>
</tr>
<tr>
<td>Temperature rise</td>
<td>12°C</td>
</tr>
</tbody>
</table>

Feedwater

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheating stages</td>
<td>7</td>
</tr>
<tr>
<td>Final feedwater temperature</td>
<td>230°C</td>
</tr>
</tbody>
</table>

Generator

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal rating</td>
<td>1,992 MVA</td>
</tr>
<tr>
<td>Power factor, nominal</td>
<td>0.9</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>27 kV ± 5%</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1,500 r.p.m.</td>
</tr>
<tr>
<td>Cooling, stator coils</td>
<td>water</td>
</tr>
<tr>
<td>Cooling, rotor</td>
<td>hydrogen</td>
</tr>
<tr>
<td>Magnetization current</td>
<td>9,471 A</td>
</tr>
<tr>
<td>Cooling water temperature</td>
<td>45°C</td>
</tr>
<tr>
<td>Hydrogen cooling medium temperature</td>
<td>40°C</td>
</tr>
</tbody>
</table>

Power supply

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main transformer</td>
<td>3 x 1-phase</td>
</tr>
<tr>
<td>Nominal rating</td>
<td>3 x 701 MVA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>410/27 kV</td>
</tr>
<tr>
<td>Auxiliary unit transformers</td>
<td>2</td>
</tr>
<tr>
<td>Nominal rating</td>
<td>90/45/45 MVA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>400/10.5 kV</td>
</tr>
<tr>
<td>Auxiliary standby transformer</td>
<td>1</td>
</tr>
<tr>
<td>Nominal rating</td>
<td>100/50/50 MVA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>110/10.5 kV</td>
</tr>
<tr>
<td>Emergency power supply</td>
<td>4 x EDG and 2 x SBO</td>
</tr>
<tr>
<td>Nominal ratings</td>
<td>4 x 7.8 MVA and 2 x 3.0 MVA</td>
</tr>
<tr>
<td>Turbine plant diesel engine</td>
<td>1</td>
</tr>
<tr>
<td>Nominal rating</td>
<td>1.6 MVA</td>
</tr>
</tbody>
</table>
1. Installation of steel structures on top of the inner containment dome preceded the construction of the outer dome.
2. Installation of the steam generator tubes.
3. Delivering the steam generators to the site.
4. Acidifying of a battery at the turbine island.
5. Lifting of the reactor pressure vessel.
6. Closure head of the reactor pressure vessel inside the reactor building.
7. The low-pressure turbine rotors.